
© by Valley Forge Consulting, Inc – All rights reserved. 1

AspectAspect--OrientedOriented
Requirements EngineeringRequirements Engineering

ExplainedExplained

Prepared by Yuri Chernak, Ph.D.Prepared by Yuri Chernak, Ph.D.
Valley Forge Consulting, IncValley Forge Consulting, Inc
Email: Email: ychernak@yahoo.comychernak@yahoo.com

2

Presentation OutlinePresentation Outline

•• IntroductionIntroduction
•• Part 1Part 1. AORE Analysis Techniques. AORE Analysis Techniques
•• Part 2Part 2. AORE Specification Techniques. AORE Specification Techniques
•• Part 3Part 3. Using RCT for Change Impact Analysis. Using RCT for Change Impact Analysis
•• Part 4Part 4. Using RCT for Test Coverage . Using RCT for Test Coverage

AssessmentAssessment
•• Presentation SummaryPresentation Summary
•• Appendix A: Descriptions of Common Appendix A: Descriptions of Common

Crosscutting ConcernsCrosscutting Concerns
•• Appendix B: Composition Modeling with UML Appendix B: Composition Modeling with UML

3

IntroductionIntroduction

4

Characteristics of Good Software Characteristics of Good Software
RequirementsRequirements

•• It is a wellIt is a well--known fact that good software requirements are critical for the known fact that good software requirements are critical for the
success of software projects. success of software projects.

•• All emerging requirements methodologies had a goal to produce goAll emerging requirements methodologies had a goal to produce good od
software requirements. software requirements.

•• The The IEEE Std. 830IEEE Std. 830--19981998 ““Recommended Practice for Software Recommended Practice for Software
RequirementsRequirements”” defines characteristics of good requirements as follows:defines characteristics of good requirements as follows:
–– CorrectCorrect
–– UnambiguousUnambiguous
–– CompleteComplete ((means both a complete set and complete individual means both a complete set and complete individual reqsreqs))
–– ConsistentConsistent
–– Ranked for importanceRanked for importance
–– VerifiableVerifiable
–– ModifiableModifiable ((means maintainable requirementsmeans maintainable requirements))
–– TraceableTraceable

The most challengingThe most challenging
to implementto implement

The main objective of AORE is improving requirements The main objective of AORE is improving requirements
completeness and maintainability. completeness and maintainability.

5

Two Categories of RequirementsTwo Categories of Requirements
•• In the case of business applications we implement different In the case of business applications we implement different

functional features that can be of two categories:functional features that can be of two categories:
–– corecore features, and features, and
–– supplementarysupplementary featuresfeatures

Application
Functionality

Supplementary
Features

Core
Features

Many of the supplementary features can be scattered
across the application and tangled with core features;

in AORE they are called crosscutting concerns.

6

Example: Impact of Supplementary Example: Impact of Supplementary
FeaturesFeatures

•• PreconditionsPreconditions::
–– User has a privilege to checkUser has a privilege to check--in guestin guest
–– Reservation has Reservation has ““ReservedReserved”” statusstatus

•• Main CourseMain Course::
–– User selects a guest to checkUser selects a guest to check--inin
–– System opens guestSystem opens guest’’s reservation screens reservation screen
–– User completes/updates guestUser completes/updates guest’’s stay data and s stay data and

saves reservationsaves reservation
–– System changes the reservation status to System changes the reservation status to ““InIn--HouseHouse””

and sends the reservation data to other systemsand sends the reservation data to other systems

Validate
user privilege

Validate
reservation status

Validate
front-end

connectivity

Validate
data entry

Validate front-end
connectivity

Validate
concurrency

Add system
interface
details

Use Case: Check-in Guest

7

Issue with Requirements CompletenessIssue with Requirements Completeness

•• The meaning of the term The meaning of the term ““requirements completenessrequirements completeness””
may vary depending on whether a requirement is may vary depending on whether a requirement is
qualified as a core feature or a crosscutting concern:qualified as a core feature or a crosscutting concern:
–– a given core feature specification is not complete a given core feature specification is not complete

without analyzing and capturing details about how without analyzing and capturing details about how
other scattered features are invoked and are affecting other scattered features are invoked and are affecting
the core feature context. the core feature context.

–– a crosscutting concern specification is not complete a crosscutting concern specification is not complete
without analyzing and specifying where it can be without analyzing and specifying where it can be
invoked and how it can affect related core features. invoked and how it can affect related core features.

Up to 75% of software defects can be allocated to crosscutting Up to 75% of software defects can be allocated to crosscutting
concerns whose impact has not been analyzed and documented. concerns whose impact has not been analyzed and documented.

8

Issue with Requirements MaintainabilityIssue with Requirements Maintainability
•• Requirements maintenance means that requirements Requirements maintenance means that requirements

artifacts initially produced in previous releases are kept artifacts initially produced in previous releases are kept
updated to be used in future releases.updated to be used in future releases.

•• There are two main reasons to maintain requirements There are two main reasons to maintain requirements
over time:over time:
–– Effective impact analysis of change requestsEffective impact analysis of change requests

((most of change requests, on average 65%most of change requests, on average 65%--85%, 85%,
relate to the existing functionality);relate to the existing functionality);

–– Lower cost of requirements developmentLower cost of requirements development ((it is it is
much cheaper to maintain the existing documents, as much cheaper to maintain the existing documents, as
opposed to creating new ones as in practice most of opposed to creating new ones as in practice most of
changes relate to the existing features).changes relate to the existing features).

In practice, requirements from previous releases In practice, requirements from previous releases
are commonly not maintained. are commonly not maintained.

9

Symptoms & RootSymptoms & Root--Causes Causes
of Nonof Non--Maintainable RequirementsMaintainable Requirements

•• The symptoms of nonThe symptoms of non--maintainable requirements:maintainable requirements:
–– impact analysis of change requests is not performed, impact analysis of change requests is not performed,

andand
–– existing requirements are not kept updated and reexisting requirements are not kept updated and re--

used in future releases. Instead, a project team keeps used in future releases. Instead, a project team keeps
developing new requirements for each release.developing new requirements for each release.

•• RootRoot--causes of noncauses of non--maintainable requirements: maintainable requirements:
–– poor structurepoor structure and and incompletenessincompleteness of requirements of requirements

models.models.

AORE specifically addresses the issue with requirements AORE specifically addresses the issue with requirements
scattering and tangling and provides techniques to scattering and tangling and provides techniques to

improve requirements improve requirements completenesscompleteness and and maintainabilitymaintainability..

10

AORE: Separation of ConcernsAORE: Separation of Concerns

•• AORE is a part of the general discipline known as AspectAORE is a part of the general discipline known as Aspect--
Oriented Software Development (Oriented Software Development (www.aosd.netwww.aosd.net) that is based) that is based
on the old software principle on the old software principle separation of concernsseparation of concerns..

•• The term The term ““separation of concernsseparation of concerns”” ((SoCSoC) was coined in 1974) was coined in 1974
by by EdsgerEdsger DijkstraDijkstra in his article in his article ““On the role of scientific On the role of scientific
thoughtthought””. . SoCSoC means breaking a problem domain into specific means breaking a problem domain into specific
aspects and then studying each aspect aspects and then studying each aspect ““in isolation for the in isolation for the
sake of its own consistencysake of its own consistency””..

In AORE we apply the In AORE we apply the SoCSoC principleprinciple to improveimprove
requirements structure and analysis.requirements structure and analysis.

http://www.aosd.net/

11

AORE vs. Other MethodologiesAORE vs. Other Methodologies

Requirements
Elicitation

Requirements
Analysis

Requirements
Specification

S
A

D
O

O
A

D

Agile Development:
User Stories

Aspect-Oriented
Requirements

•• AORE is not a replacement for any of the existing methodologies.AORE is not a replacement for any of the existing methodologies.
•• AORE offers requirements analysis and specification techniques AORE offers requirements analysis and specification techniques

that can be applied within any existing methodology to help us that can be applied within any existing methodology to help us
further improve requirements completeness and maintainability.further improve requirements completeness and maintainability.

12

Part 1Part 1

AOREAORE
Analysis TechniquesAnalysis Techniques

13

Analysis Phase: Analysis Phase:
Traditional Application DecompositionTraditional Application Decomposition

•• Regardless of which methodology we follow, in the analysis phaseRegardless of which methodology we follow, in the analysis phase
we define modularization and structure of a future requirements we define modularization and structure of a future requirements
model by:model by:
–– decomposing the application into functional modules (a.k.a. decomposing the application into functional modules (a.k.a.

functional areas), andfunctional areas), and
–– identifying the inventory of features (a.k.a. concerns);identifying the inventory of features (a.k.a. concerns);

•• In SAD we perform topIn SAD we perform top--down functional decomposition and identify down functional decomposition and identify
a list of core features for each functional area.a list of core features for each functional area.

•• In OOAD we decompose functionality into use case packages and In OOAD we decompose functionality into use case packages and
identify a list of use cases.identify a list of use cases.

In SAD or OOAD the application functionality is partitioned In SAD or OOAD the application functionality is partitioned
along just one dimension, i.e., by core features.along just one dimension, i.e., by core features.

14

AORE: TwoAORE: Two--dimensional Decompositiondimensional Decomposition

M
od

ul
e

1

M
od

ul
e

2

M
od

ul
e

3

M
od

ul
e

N

A complete inventory of concerns

In AORE we follow the In AORE we follow the SoCSoC principle and perform twoprinciple and perform two--dimensional dimensional
decomposition by decomposition by core featurescore features and and crosscutting concernscrosscutting concerns..

Core Features
C

ro
ss

cu
tti

ng
C

on
ce

rn
s Type 1

Type 2

Type N

Definition
Core Feature – is a unit of the application

functionality that, being executed, allows the
user to achieve a particular business goal..

Definition
Crosscutting Concern – is a specific
category of software requirements that
are scattered across the application and

tangled with core features.

Application
Functionality

15

Analysis Phase: Analysis Phase:
Characteristics of Crosscutting ConcernsCharacteristics of Crosscutting Concerns

•• Requirements that we can model as crosscutting concerns should Requirements that we can model as crosscutting concerns should
have the following characteristics:have the following characteristics:
–– They cannot be invoked directly by endThey cannot be invoked directly by end--users (i.e., they need a users (i.e., they need a

context of core features);context of core features);
–– They impact the context of core features (i.e., they can constraThey impact the context of core features (i.e., they can constraint, int,

interrupt, or enhance core features);interrupt, or enhance core features);
–– They are sufficiently scattered, i.e., they affect at least 2They are sufficiently scattered, i.e., they affect at least 2--3 core 3 core

features;features;
•• There some formal techniques to There some formal techniques to ““minemine”” crosscutting concerns in the crosscutting concerns in the

existing requirements documentation.existing requirements documentation.
•• In practice, we identify crosscutting concerns based on our prioIn practice, we identify crosscutting concerns based on our prior r

experience with similar applications and our common sense.experience with similar applications and our common sense.

ScatteringScattering and and tanglingtangling are the main characteristics of are the main characteristics of
crosscutting concerns. crosscutting concerns.

16

Examples of Crosscutting ConcernsExamples of Crosscutting Concerns

•• The list of crosscutting concerns common to financial The list of crosscutting concerns common to financial
(e.g. trading) applications includes:(e.g. trading) applications includes:

ET ET –– EntitlementsEntitlements DDV DDV –– Data DependencyData Dependency
ValidationValidation

AS AS –– Account SetupAccount Setup DDD DDD –– DataData--Driven DefaultsDriven Defaults
RGN RGN –– RegionRegion CN CN –– ConnectivityConnectivity
PT PT –– Product TypeProduct Type CC CC –– ConcurrencyConcurrency
OT OT –– Order Type (or Deal Type)Order Type (or Deal Type) SI SI –– System InterfaceSystem Interface
OS OS –– Order Status (or Deal Status)Order Status (or Deal Status) MB MB –– Message BroadcastingMessage Broadcasting
FV FV –– Field ValidationField Validation CL CL –– CalculationsCalculations

See the meaning and descriptions of these crosscuttingSee the meaning and descriptions of these crosscutting
concerns in the Appendix section.concerns in the Appendix section.

17

Analysis Phase: Analysis Phase:
Analyzing Requirements ImpactAnalyzing Requirements Impact

•• In AORE we analyze the mutual impact of In AORE we analyze the mutual impact of
requirements, in particular, how crosscutting concerns requirements, in particular, how crosscutting concerns
affect core features. affect core features.

•• The result of such analysis can be presented in the The result of such analysis can be presented in the
form of a Requirements Composition Table (RCT) that form of a Requirements Composition Table (RCT) that
presents a holistic view of the application functionality. presents a holistic view of the application functionality.

RCTRCT is an important deliverable of the is an important deliverable of the AnalysisAnalysis phasephase
when we follow the Aspectwhen we follow the Aspect--Oriented Methodology.Oriented Methodology.

18

Analysis Phase: Analysis Phase:
Composing a Structure of RequirementsComposing a Structure of Requirements

11 11 11 11
11 00 11 11
00 11 11 00
11 11 00 11

CoreCore
Feature 1Feature 1

CoreCore
Feature 2Feature 2

CoreCore
Feature NFeature N

Crosscutting Concern 1Crosscutting Concern 1

Crosscutting Concern 2Crosscutting Concern 2

Crosscutting Concern NCrosscutting Concern N

1 1 –– means applicable concernmeans applicable concern
0 0 –– means not applicable concernmeans not applicable concern

•• We compose a structure of requirements by analyzing each We compose a structure of requirements by analyzing each
core feature and making a decision about which of the core feature and making a decision about which of the
crosscutting concerns affect the feature context, for example:crosscutting concerns affect the feature context, for example:

…..

…..

19

RCT Example (fragment): RCT Example (fragment):
Hotel Management ApplicationHotel Management Application

List of Concerns
U

C.
01

.0
1.

 C
re

at
e

G
ue

st
 R

es
er

va
tio

n

U
C.

01
.0

2.
 U

pd
at

e
G

ue
st

 R
es

er
va

tio
n

U
C.

01
.0

3.
 C

an
ce

l G
ue

st
 R

es
er

va
tio

n

U
C.

01
.0

4.
 C

he
ck

-In
 G

ue
st

U
C.

01
.0

5.
 C

he
ck

-O
ut

 G
ue

st

U
C.

01
.0

6.
 P

os
t C

ha
rg

es
 to

 G
ue

st
's

 F
ol

io

U
C.

01
.0

7.
 V

ie
w

, U
pd

at
e

Fo
lio

 C
ha

rg
es

U
C.

01
.0

8.
 C

re
at

e
M

es
sa

ge
 fo

r
G

ue
st

U
C.

01
.0

9.
 V

ie
w

, C
an

ce
l M

es
sa

ge

U
C.

01
.1

0.
 A

dd
 T

ra
ve

l A
ge

nc
y

Co
m

m
is

si
on

s

U
C.

01
.1

1.
 V

ie
w

, U
pd

at
e

Tr
av

el
 A

ge
nc

y
C

om
m

is
si

on
s

U
C.

01
.1

2.
 M

an
ag

e
Ro

om
in

g
Li

st

Core Functionality 1 1 1 1 1 1 1 1 1 1 1 1
GUI Features 1 1 1 1 1 1 1 1 1 1 1 1
Crosscutting Concerns
ET - Entitlements 1 1 1 1 1 1 1 1 1 1 1 1
ST - Status 0 1 1 1 1 1 1 1 1 1 1 1
FV - Field Validation 1 1 0 1 0 1 1 0 0 1 1 1
DD - Data Dependency 1 1 0 1 0 1 1 0 0 0 0 0
CC - Concurrency 1 1 0 1 0 0 0 0 0 0 0 0
CN - Connectivity 1 1 1 1 1 0 0 0 0 0 0 0
SI - System Interface 1 1 1 1 1 0 0 0 0 0 0 0

"01. Front Desk" Module

1 – means applicable concern
0 – means not applicable concern

20

RCT Example (fragment): RCT Example (fragment):
Equity Trading ApplicationEquity Trading Application

01
.0

1
M

an
ag

e
E

xp
re

ss
io

ns

01
.0

2
M

an
ag

e
S

cr
ip

ts

01
.0

3
M

an
ag

e
Tr

ad
in

g
Li

m
its

01
.0

4
M

an
ag

e
R

ul
es

02
.0

1
M

an
ag

e
B

lo
tte

r G
rid

02
.0

2
M

an
ag

e
G

ro
up

s

02
.0

3
A

pp
ly

 A
ut

o
Fi

lte
r

02
.0

4
E

xp
or

t D
at

a

03
.0

1
D

es
ig

n
A

le
rts

03
.0

2
E

va
lu

at
e

A
le

rts

04
.0

1
R

ou
te

 to
 T

ra
di

ng
 S

ys
te

m

04
.0

2
E

nt
er

 S
in

gl
e

O
rd

er

04
.0

3
E

nt
er

 P
or

tfo
lio

 O
rd

er

04
.0

4
S

lic
e

O
rd

er

04
.0

5
M

an
ag

e
C

lie
nt

 C
ov

er
ag

e

04
.0

6
M

an
ag

e
P

or
tfo

lio
 (M

er
ge

, D
el

et
e

04
.0

7
R

ol
l B

lo
ck

 O
rd

er
 to

 N
ex

t D
ay

05
.0

1
M

an
ag

e
A

TO
M

S
 J

ar

05
.0

2
R

ou
te

 O
rd

er
 fo

r E
xe

cu
tio

n

05
.0

3
V

ie
w

, H
an

dl
e

O
rd

er
 E

xe
cu

tio
ns

05
.0

4
C

ro
ss

 O
de

rs

Core Functionality 1
GUI Features 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
Crosscuting Concerns
ET - Entitlements 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
AS - Account Setup 0
PT - Product Type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1
OS - Order Status 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1
FV - Field Validation 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 1
DD - Data Dependency 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1
CN - Connectivity 1
CC - Concurrency 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0
SI-Out - System Interface (to external trading systems) 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1
SI-In - System Interface (to external Upstream systems) 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0
MB - Message Broadcasting 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1
CL - Calculations 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1

04. Internal Order Management

List of Concerns

03. Alerts

Modules

05. External Order
Management

02. Blotter Management01. Administration

21

Requirements Composition Table vs. Requirements Composition Table vs.
Requirements Traceability MatrixRequirements Traceability Matrix

•• A A Requirements Composition TableRequirements Composition Table (RCT) should not be (RCT) should not be
confused with the confused with the Requirements Traceability MatrixRequirements Traceability Matrix (RTM).(RTM).

•• An RCT is used to capture modularization and composition of An RCT is used to capture modularization and composition of
requirements in order to provide a holistic view of the requirements in order to provide a holistic view of the
application functionality.application functionality.

•• An RTMAn RTM’’s purpose is twofold:s purpose is twofold:
–– To identify and maintain the relationship between software To identify and maintain the relationship between software

requirements and their sources, which is known as requirements and their sources, which is known as
backward traceabilitybackward traceability; ;

–– to identify and maintain the relationship between to identify and maintain the relationship between
requirements and other project artifacts developed based requirements and other project artifacts developed based
on requirements; this is known as on requirements; this is known as forward traceabilityforward traceability. .

22

Summary of the RCT BenefitsSummary of the RCT Benefits

•• RCT provides a structured and holistic view of the application RCT provides a structured and holistic view of the application
functionality and it can help us improve requirements functionality and it can help us improve requirements
analysis and maintainability. analysis and maintainability.

•• RCT is an important artifact of the Requirements Analysis RCT is an important artifact of the Requirements Analysis
phase that can effectively support various project tasks:phase that can effectively support various project tasks:
–– Planning Iterative and Incremental DevelopmentPlanning Iterative and Incremental Development
–– Supporting Agile TestSupporting Agile Test--Driven DevelopmentDriven Development
–– Requirements Reverse Engineering*Requirements Reverse Engineering*
–– Software Change Impact Analysis*Software Change Impact Analysis*
–– Functional Test PlanningFunctional Test Planning
–– Test Coverage Assessment*Test Coverage Assessment*
–– Effective Exploratory TestingEffective Exploratory Testing
–– Knowledge Transfer*Knowledge Transfer*

23

Summary of the AORE TechniquesSummary of the AORE Techniques

RequirementsRequirements
ElicitationElicitation

RequirementsRequirements
AnalysisAnalysis

RequirementsRequirements
SpecificationSpecification

Separation of Concerns Separation of Concerns
Requirements Impact Requirements Impact

AnalysisAnalysis
Requirements Composition Requirements Composition

TableTable

ImprovingImproving
RequirementsRequirements
MaintainabilityMaintainability

ImprovingImproving
RequirementsRequirements
CompletenessCompleteness

AspectAspect--Oriented RequirementsOriented Requirements
EngineeringEngineering

AOREAORE
BenefitsBenefits

SpecificationSpecification
TechniquesTechniques

AOREAORE
TechniquesTechniques

24

Part 2Part 2

AOREAORE
Specification TechniquesSpecification Techniques

25

Specification Phase: Specification Phase:
Defining Composition RulesDefining Composition Rules

•• The impact of crosscutting concerns can be classified by the folThe impact of crosscutting concerns can be classified by the following lowing
three cases:three cases:
–– Impose a constraint on a core featureImpose a constraint on a core feature
–– Interrupt a core feature flow and change its outcomeInterrupt a core feature flow and change its outcome
–– Add details to the affected core featureAdd details to the affected core feature

•• Based on this classification, AORE defines composition rules thaBased on this classification, AORE defines composition rules that can be t can be
used in functional specifications:used in functional specifications:
–– WrapWrap (means imposing a constraint)(means imposing a constraint), ,
–– OverrideOverride (means interrupting a flow)(means interrupting a flow), ,
–– OverlapOverlap (means adding details)(means adding details)..

•• In the In the Analysis phaseAnalysis phase we analyze and document the mutual impact of we analyze and document the mutual impact of
requirements in RCT.requirements in RCT.

•• In the In the Specification phaseSpecification phase we use the defined composition rules to we use the defined composition rules to
specify that impact in requirements specifications.specify that impact in requirements specifications.

26

Example: Agile User StoryExample: Agile User Story

User StoryUser Story
““A user can checkA user can check--in a guest who has a valid reservation.in a guest who has a valid reservation.””

•• From the Requirements Composition Table we already know which From the Requirements Composition Table we already know which
crosscutting concerns affect this story:crosscutting concerns affect this story:
–– ETET--EntitlementsEntitlements -- YY
–– STST--StatusStatus -- YY
–– FVFV--Field ValidationField Validation -- YY
–– DDDD--Data DependencyData Dependency -- YY
–– CCCC--ConcurrencyConcurrency -- YY
–– CNCN--ConnectivityConnectivity -- YY
–– SISI--System InterfaceSystem Interface -- YY

•• We then develop ideas about how these concerns affect the story We then develop ideas about how these concerns affect the story context context
and select related composition rules (see next Slide).and select related composition rules (see next Slide).

We will use an imaginary We will use an imaginary Hotel Management System Hotel Management System to illustrate to illustrate
our discussion about composition rules. our discussion about composition rules.

27

Specification Phase: Specification Phase:
Composition Modeling with UMLComposition Modeling with UML

Use CaseUse Case
(or User Story)(or User Story)

STST--StatusStatus

<<wrap>><<wrap>>

FVFV--FieldValidationFieldValidation

SISI--SystemInterfaceSystemInterface

<<override>><<override>>

<<overlap>><<overlap>>

ETET--EntitlementsEntitlements

<<wrap>><<wrap>>

CNCN--ConnectivityConnectivity

<<override>><<override>>

CCCC--ConcurrencyConcurrency

<<override>><<override>>
DDDD--DataDependencyDataDependency

<<override>><<override>>

28

Example: Documenting RealizationsExample: Documenting Realizations
To see the To see the whole storywhole story, we document realizations of the applicable crosscutting , we document realizations of the applicable crosscutting
concerns:concerns:

ETET--wrapwrap –– to begin this story, the system validates user entitlements;to begin this story, the system validates user entitlements;
STST--wrapwrap –– to begin this story, the system validates the reservation statuto begin this story, the system validates the reservation status thats that
should be should be ““ReservedReserved””;;
FVFV--overrideoverride –– to complete this story, the system checks whether theto complete this story, the system checks whether the
reservationreservation’’s datas data--entry fields have valid values;entry fields have valid values;
DDDD--overrideoverride –– to complete this story, the system checks whether some fieldsto complete this story, the system checks whether some fields
have valid combinations (e.g. Arrival Date < Departure Date, have valid combinations (e.g. Arrival Date < Departure Date,
Departure Date < Credit Card Exp. Date); Departure Date < Credit Card Exp. Date);
CNCN--overrideoverride –– to complete this story, the system checks whether the frontto complete this story, the system checks whether the front--endend
stays connected;stays connected;
CCCC--overrideoverride –– to complete this story, the system checks whether the selectedto complete this story, the system checks whether the selected
room is not already taken by another frontroom is not already taken by another front--desk clerk;desk clerk;
SISI--overlapoverlap –– to complete this story, the system sends the reservation data tto complete this story, the system sends the reservation data to theo the
Central Reservation System and Guest Rewards System. Central Reservation System and Guest Rewards System.

By specifying By specifying realizationsrealizations of crosscutting concerns we add of crosscutting concerns we add
necessary details to the story context. necessary details to the story context.

29

Example: Use Case ScenarioExample: Use Case Scenario

UC.01.04UC.01.04 CheckCheck--in Guestin Guest
PrePre--conditions:conditions:
User has a privilege to checkUser has a privilege to check--in guest (in guest (ETET--wrap1wrap1).).
GuestGuest’’s reservation has a status s reservation has a status ““ReservedReserved”” (STST--wrap2wrap2)

Normal Course of Events:Normal Course of Events:
1.1. This use case starts when User selects GuestThis use case starts when User selects Guest’’ name from the name from the ““TodayToday’’s Arrivals Arrival”” list to list to

access her reservation.access her reservation.
2.2. System displays GuestSystem displays Guest’’s reservation data and changes the reservation status from s reservation data and changes the reservation status from

““ReservedReserved”” to to ““InIn--HouseHouse”” ((CNCN--override1override1).).
3.3. User verifies/updates GuestUser verifies/updates Guest’’s reservation data.s reservation data.
4.4. User selects a room for the guest.User selects a room for the guest.
5.5. User verifies/updates the guestUser verifies/updates the guest’’s payment information.s payment information.
6.6. User completes the checkUser completes the check--in process and submits the reservation.in process and submits the reservation.
7.7. System validates the checkSystem validates the check--in information, sends the reservation data to other systems, in information, sends the reservation data to other systems,

and displays a checkand displays a check--in confirmation message (in confirmation message (FVFV--override2override2, , DDVDDV--override3override3, , CCCC--
override4override4, , CNCN--override5override5, , SISI--overlap1overlap1))

8.8. User acknowledges the checkUser acknowledges the check--in confirmation.in confirmation.
9.9. System brings User back to the main screen, removes GuestSystem brings User back to the main screen, removes Guest’’s name from s name from ““TodayToday’’s s

ArrivalsArrivals”” list, and this use case ends.list, and this use case ends.

Composition
Pointers

(hyperlinks)

30

Join Points and Composition PointersJoin Points and Composition Pointers

•• A A join pointjoin point indicates where the impact of crosscutting concerns is insertedindicates where the impact of crosscutting concerns is inserted..
•• A join point could be either a use case precondition or use caseA join point could be either a use case precondition or use case step that is step that is

impacted by one or more crosscutting concerns.impacted by one or more crosscutting concerns.

Join Point DefinitionJoin Point Definition

Composition Pointer DefinitionComposition Pointer Definition
•• A A composition pointercomposition pointer indicates what and how affects a give step in the use indicates what and how affects a give step in the use

case scenario and is included in the affected join point.case scenario and is included in the affected join point.
•• Each composition pointer, for example (ETEach composition pointer, for example (ET--wrap1) or (FVwrap1) or (FV--override2), is override2), is

composed of the crosscutting concern type and its composition rucomposed of the crosscutting concern type and its composition rule and it le and it
serves a dual purpose:serves a dual purpose:
–– First, it indicates what and how impacts a given join point, so First, it indicates what and how impacts a given join point, so we could we could

clearly see what else we need to consider at this point in the uclearly see what else we need to consider at this point in the use case se case
scenario. scenario.

–– Second, it is used as a hyperlink to quickly navigate to detailsSecond, it is used as a hyperlink to quickly navigate to details of a given of a given
crosscutting concern realization documented and bookmarked in a crosscutting concern realization documented and bookmarked in a
separate section separate section ““AppendixAppendix”” of a use case specification. of a use case specification.

31

Example: Documenting RealizationsExample: Documenting Realizations

Composition
pointers

(bookmarks)

Composition Composition
PointersPointers

Realizations of Crosscutting ConcernsRealizations of Crosscutting Concerns References toReferences to
SupplementarySupplementary
RequirementsRequirements

ETET--wrap1wrap1 This use case can be executed only by the following user roles:This use case can be executed only by the following user roles:
General ManagerGeneral Manager
Front Desk ManagerFront Desk Manager
Front Desk UserFront Desk User

For other roles this feature is not available.For other roles this feature is not available.

SR_ET:SR_ET:
01.0501.05

STST--wrap2wrap2 This use case can be executed only when a reservation status is This use case can be executed only when a reservation status is
““ReservedReserved””. For other reservation statuses this feature is not . For other reservation statuses this feature is not
available. available.

SR_ST:SR_ST:
01.0101.01

CNCN--override1override1 System checks for the frontSystem checks for the front--end connectivity before opening the end connectivity before opening the
guestguest’’s reservation.s reservation.

SR_CN:SR_CN:
01.0101.01

FVFV--override2override2 System validates individual fields:System validates individual fields:
Guest NameGuest Name
Guest AddressGuest Address
Number of Nights, etc.Number of Nights, etc.

SR_FV:SR_FV:
01.0301.03
01.0901.09
01.1201.12

DDVDDV--override3override3 System validates a combination of fields:System validates a combination of fields:
CheckCheck--in Date < Checkin Date < Check--out Date;out Date;
CheckCheck--out Date < Credit Card Expiration Date;out Date < Credit Card Expiration Date;

SR_DDV:SR_DDV:
01.0401.04
01.0501.05

CCCC--override4override4 System validates concurrent selection of the same room for System validates concurrent selection of the same room for
different guests.different guests.

SR_CC:SR_CC:
01.0101.01

CNCN--override5override5 System checks for the frontSystem checks for the front--end connectivity before saving a end connectivity before saving a
reservation. reservation.

SR_CN:SR_CN:
01.0201.02

SISI--overlap1overlap1 System sends the checkSystem sends the check--in information to the Central in information to the Central
Reservation System and Guest Rewards System.Reservation System and Guest Rewards System.

SR_SI:SR_SI:
01.0201.02
01.0801.08

Use Case Appendix: Realizations of Crosscutting ConcernsUse Case Appendix: Realizations of Crosscutting Concerns

References to
realization details
in supplementary

requirements.

32

Summary of the AORE TechniquesSummary of the AORE Techniques

RequirementsRequirements
ElicitationElicitation

RequirementsRequirements
AnalysisAnalysis

RequirementsRequirements
SpecificationSpecification

Separation of Concerns Separation of Concerns
Requirements Mutual Requirements Mutual

Impact AnalysisImpact Analysis
Requirements Composition Requirements Composition

TableTable

ImprovingImproving
RequirementsRequirements
MaintainabilityMaintainability

ImprovingImproving
RequirementsRequirements
CompletenessCompleteness

AspectAspect--Oriented RequirementsOriented Requirements
EngineeringEngineering

AOREAORE
BenefitsBenefits

Join PointsJoin Points
Composition RulesComposition Rules

Composition PointersComposition Pointers
UML ModelingUML Modeling

AOREAORE
TechniquesTechniques

33

Benefits of the AORE SpecificationBenefits of the AORE Specification
TechniquesTechniques

•• AORE can help us improve requirements AORE can help us improve requirements
completeness regardless of what specification style we completeness regardless of what specification style we
use use –– traditional style, use cases, or user stories.traditional style, use cases, or user stories.

•• AORE defines join points and composition rules to AORE defines join points and composition rules to
document the impact of crosscutting concerns in the document the impact of crosscutting concerns in the
context of core features, thus improving requirements context of core features, thus improving requirements
completeness.completeness.

•• AORE provides guidelines to model the composition of AORE provides guidelines to model the composition of
concerns with UML.concerns with UML.

34

Part 3Part 3

Using RCT forUsing RCT for
Change Impact Analysis Change Impact Analysis

35

Change Impact Analysis Change Impact Analysis –– Why?Why?

•• Most of requested changes (on average 65% Most of requested changes (on average 65% -- 85%) overlap with 85%) overlap with
the existing functionality.the existing functionality.

•• Commonly, there is a manyCommonly, there is a many--toto--many relationship between change many relationship between change
requests and impacted existing features.requests and impacted existing features.

•• Complete understanding of the change impact is necessary for Complete understanding of the change impact is necessary for
accurate effort estimation and producing a quality software.accurate effort estimation and producing a quality software.

Common ContextCommon Context

Common IssuesCommon Issues

•• There is no complete requirements model, at best requirements arThere is no complete requirements model, at best requirements are e
managed only by releasemanaged only by release--specific slices of functionality.specific slices of functionality.

•• When a complete requirements model is not available, performing When a complete requirements model is not available, performing
impact analysis is very difficult.impact analysis is very difficult.

•• Lack of understanding the impactLack of understanding the impact of changes is the main reason for of changes is the main reason for
poor quality of software products and schedule overruns.poor quality of software products and schedule overruns.

36

Change Impact Analysis Change Impact Analysis –– How?How?
Use of RCTUse of RCT
•• A Requirements Composition Table can be effectively used as a A Requirements Composition Table can be effectively used as a

frame of reference to analyze and document the impact of changesframe of reference to analyze and document the impact of changes. .
•• When there is no complete requirements model, reverseWhen there is no complete requirements model, reverse--engineer engineer

the existing functionality and produce a Requirements Compositiothe existing functionality and produce a Requirements Composition n
Table. Table.

Requirements ReverseRequirements Reverse--Engineering StepsEngineering Steps
1.1. Conduct a kickoff meeting with a development manager and BA to Conduct a kickoff meeting with a development manager and BA to

agree on functional decomposition and list of crosscutting conceagree on functional decomposition and list of crosscutting concerns.rns.
2.2. Conduct interview sessions with project team members to identifyConduct interview sessions with project team members to identify

features for each of the functional areas and produce an RCT.features for each of the functional areas and produce an RCT.
3.3. Refine the list of crosscutting concerns, update the RCT.Refine the list of crosscutting concerns, update the RCT.

To complete reverseTo complete reverse--engineering of a midengineering of a mid--size applicationsize application
and produce an RCT takes on average 7and produce an RCT takes on average 7--10 hours.10 hours.

37

Approach to Performing Approach to Performing
Change Impact AnalysisChange Impact Analysis

•• Understand the type of change:Understand the type of change:
–– BehaviorBehavior--related, related, analyze what kind of behavior:analyze what kind of behavior:

•• Core feature, orCore feature, or
•• Crosscutting concernCrosscutting concern

–– DataData--related, related, analyze: analyze:
•• Where the data change should be implementedWhere the data change should be implemented
•• Where the changed data will be used across the Where the changed data will be used across the

application (e.g. core features, reports, etc)application (e.g. core features, reports, etc)
•• Capture the impact analysis results in RCTCapture the impact analysis results in RCT
•• Analyze changes applied to the same existing core Analyze changes applied to the same existing core

feature to see whether they can conflict with each other feature to see whether they can conflict with each other

Change Impact Analysis GuidelinesChange Impact Analysis Guidelines

38

Example: Documenting the ResultsExample: Documenting the Results
of Change Impact Analysisof Change Impact Analysis

When multiple change requests affect the same When multiple change requests affect the same
existing feature they can conflict with each other.existing feature they can conflict with each other.

Concern
Types

U
C

.1
.0

1
C

re
at

e
N

ew
 S

H
G

ue
st

 R
es

er
va

tio
n

U
C

.1
.0

2
U

pd
at

e
S

H
G

ue
st

 R
es

er
va

tio
n

U
C

.1
.0

3
C

an
ce

l S
H

G
ue

st
 R

es
er

va
tio

n

U
C

.1
.0

4
C

re
at

e
N

ew
 C

om
pa

ny
 A

cc
ou

nt

U
C

.1
.0

5
U

pd
at

e
C

om
pa

ny
 A

cc
ou

nt

U
C

.1
.0

6
C

lo
se

 C
om

pa
ny

 A
cc

ou
nt

U
C

.1
.0

8
C

he
ck

-In
 G

ue
st

U
C

.1
.0

9
C

he
ck

-O
ut

 G
ue

st

U
C

.1
.1

0
P

os
t N

ew
 C

ha
rg

es
 to

 F
ol

io

UC
.1

.1
1

Vi
ew

, U
pd

at
e

Fo
lio

 C
ha

rg
es

U
C

.1
.1

2
Q

ui
ck

 P
os

tin
g

of
 F

ol
io

 C
ha

rg
es

U
C

.1
.1

3
C

re
at

e
N

ew
 M

es
sa

ge

U
C

.1
.1

4
Vi

ew
, C

an
ce

l M
es

sa
ge

U
C

.1
.1

5
C

re
at

e
N

ew
 G

ro
up

U
C

.1
.1

6
Vi

ew
, U

pd
at

e
G

ro
up

U
C

.1
.1

7
C

an
ce

l,
C

lo
se

 G
ro

up

U
C

.1
.1

8
C

re
at

e
N

ew
 C

R
S

G
ue

st
 R

es
er

va
tio

n

U
C

.1
.1

9
U

pd
at

e
C

RS
 G

ue
st

 R
es

er
va

tio
n

U
C

.1
.2

0
C

an
ce

l C
R

S
 G

ue
st

 R
es

er
va

tio
n

U
C

.1
.2

1
C

re
at

e,
 U

pd
at

e
C

om
pa

ny
 S

ta
te

m
en

t

U
C

.1
.2

2
A

dd
, V

ie
w

 T
ra

ve
l A

ge
nc

y
Co

m
m

is
si

on
s

U
C

.1
.2

3
B

lo
ck

 R
oo

m
 fo

r C
om

pa
ny

UC
.1

.2
4

M
an

ag
e

Ro
om

in
g

Li
st

Core Functionality BRD.4.1.24 BRD.4.1.6
BRD.4.1.24

1 1 1 1 1 BRD.4.4.5
BRD.4.1.24

BRD.4.1.17
BRD.4.4.1

BRD.4.4.1 BRD.4.1.17
BRD.4.4.1

1 1 1 1 1 1 BRD.4.1.6 1 1 1 1 1

GUI - User Interface BRD.4.1.10 BRD.4.1.6
BRD.4.1.10

BRD.4.1.10 1 0 0 0 0 BRD.4.1.4
BRD.4.1.26
BRD.4.4.3

BRD.4.4.3 BRD.4.1.4
BRD.4.1.26

1 0 1 0 0 0 BRD.4.1.6 0 1 1 1 1

Crosscutting Concerns
FV - Field Validation BRD.4.1.26 BRD.4.1.9

BRD.4.1.26
0 1 1 0 1 0 BRD.4.4.3 0 1 1 0 1 1 0 1 BRD.4.1.9 1 1 1 1 1

DD - Data Dependency 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0
CC - Concurrency 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
SI - System Interface 1 1 1 1 1 1 1 1 BRD.4.4.3 BRD.4.4.3 0 0 0 1 1 1 1 1 1 0 0 0 0
CN - Connectivity 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
RP - Reports 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0
ST - Status 0 1 1 0 1 1 1 1 1 BRD.4.1.21 0 1 1 1 1 1 0 0 0 1 1 0 1
DF - Data Flow BRD.4.4.7 BRD.4.4.7 BRD.4.4.7

Front Office Module

Impact of
Changes

39

Benefits of Change Impact AnalysisBenefits of Change Impact Analysis

•• A Development Manager can better see the effort to A Development Manager can better see the effort to
implement changes and better estimate the schedule.implement changes and better estimate the schedule.

•• A Development Team can produce code of better A Development Team can produce code of better
quality.quality.

•• A QA Team can better understand quality risks, better A QA Team can better understand quality risks, better
plan functional testing, and design more complete tests.plan functional testing, and design more complete tests.

40

Part 4Part 4

Using RCT forUsing RCT for
Test Coverage AssessmentTest Coverage Assessment
Reference: Reference:
Y. Chernak Y. Chernak ““Mind the Gap: Using a Requirements Mind the Gap: Using a Requirements
Composition Table to Assess Test CoverageComposition Table to Assess Test Coverage””
Better Software, March 2008Better Software, March 2008

41

Common Test Process Issue Common Test Process Issue

•• On critical projects testers commonly maintain and execute a On critical projects testers commonly maintain and execute a
regression test suite. In this case we are concerned with the regression test suite. In this case we are concerned with the
test suite completeness, as our final application certification test suite completeness, as our final application certification is is
only as good as the regression suite coverage. only as good as the regression suite coverage.

•• A conventional technique to measure test coverage requires A conventional technique to measure test coverage requires
complete software requirements to be used as a frame of complete software requirements to be used as a frame of
reference.reference.

•• Common IssueCommon Issue::
–– Testers in the field do not have complete requirements, as a Testers in the field do not have complete requirements, as a

result, they do not have visibility into regression suite result, they do not have visibility into regression suite
completeness and test coverage gaps.completeness and test coverage gaps.

–– Statistics show that on such projects test suites are commonly Statistics show that on such projects test suites are commonly
incomplete with the average coverage between 15 % to 35 %.incomplete with the average coverage between 15 % to 35 %.

42

Purposes of the RCT TechniquePurposes of the RCT Technique

•• In test coverage assessment the RCT technique is primarily intenIn test coverage assessment the RCT technique is primarily intended ded
to support our analysis from three perspectives:to support our analysis from three perspectives:
1.1. identifying test coverage gaps, i.e., requirements not covered bidentifying test coverage gaps, i.e., requirements not covered by y

tests;tests;
2.2. providing testers with visibility into which requirements have mproviding testers with visibility into which requirements have more ore

and which ones have less test coverage;and which ones have less test coverage;
3.3. helping testers understand which types of concerns they helping testers understand which types of concerns they

commonly miss in test designs; commonly miss in test designs;
•• Note, assessment of test coverage is not the same as evaluation Note, assessment of test coverage is not the same as evaluation of of

test design completeness for individual requirements. For exampltest design completeness for individual requirements. For example, e,
you can create tests for all application features and achieve coyou can create tests for all application features and achieve complete mplete
test coverage; still some of the individual requirements can lactest coverage; still some of the individual requirements can lack k
necessary test cases.necessary test cases.

43

The Assessment StepsThe Assessment Steps

•• The RCT technique to assess test coverage The RCT technique to assess test coverage
is composed of the following three steps:is composed of the following three steps:
1.1. ReverseReverse--engineer requirements and engineer requirements and

present their structure in a requirements present their structure in a requirements
composition table (composition table (we discussed in Part 1 we discussed in Part 1
and Part 3and Part 3))

2.2. Establish traceability between Establish traceability between
requirements and regression testsrequirements and regression tests

3.3. Measure test coverage and identify gaps Measure test coverage and identify gaps

44

Step 2: Establish TraceabilityStep 2: Establish Traceability

•• Test management tools, like HP Quality Center (QC), Test management tools, like HP Quality Center (QC),
can be very effective in establishing traceability between can be very effective in establishing traceability between
requirements and tests.requirements and tests.

•• First, create in QC a requirements repository following First, create in QC a requirements repository following
the same requirements structure as we created in the the same requirements structure as we created in the
RCT.RCT.

•• Second, use this inventory and structure of Second, use this inventory and structure of
requirements as a frame of reference to establish requirements as a frame of reference to establish
traceability from the tests to related requirements.traceability from the tests to related requirements.

•• Depending on your test design, it is possible that a Depending on your test design, it is possible that a
given test can be traced to more than one concern. given test can be traced to more than one concern.
Continue this activity until all regression tests are traced Continue this activity until all regression tests are traced
to their related requirements. to their related requirements.

45

Example: Requirements RepositoryExample: Requirements Repository
in HP Quality Centerin HP Quality Center

Test Coverage
Gaps

Tip:Tip:
Create the test repository Create the test repository
structure the same as structure the same as
requirements, then maintaining requirements, then maintaining
tests and managing traceability tests and managing traceability
between requirements and tests between requirements and tests
will be more efficient.will be more efficient.

46

Step 3: Measure Test Coverage and Step 3: Measure Test Coverage and
Identify GapsIdentify Gaps

•• To derive coverage measurements, mark with a different color theTo derive coverage measurements, mark with a different color the RCT cells RCT cells
that represent requirements not covered by tests.that represent requirements not covered by tests.

•• After that derive coverage measurements from two perspectives:After that derive coverage measurements from two perspectives:
–– a) test coverage for each core feature context, and a) test coverage for each core feature context, and
–– b) test coverage for each concern type (across all core featuresb) test coverage for each concern type (across all core features).).

•• Measure test coverage for each core feature context (i.e. a coluMeasure test coverage for each core feature context (i.e. a column in the mn in the
RCT) as follows:RCT) as follows:
1.1. calculate the sum of all applicable concerns for a given core cocalculate the sum of all applicable concerns for a given core context. This ntext. This

number represents 100% of concerns to be covered by tests;number represents 100% of concerns to be covered by tests;
2.2. subtract from the sum the number of colored cells, i.e., concernsubtract from the sum the number of colored cells, i.e., concerns not s not

covered by tests;covered by tests;
3.3. calculate the ratio of covered concerns to the total number of ccalculate the ratio of covered concerns to the total number of concerns oncerns

and present it as a percentage of requirements covered by tests;and present it as a percentage of requirements covered by tests;
4.4. Calculate coverage for each module and for the entire applicatioCalculate coverage for each module and for the entire application. n.

47

Step 3 (contStep 3 (cont’’d): Presenting the Test d): Presenting the Test
Coverage ResultsCoverage Results

•• When we execute regression testing we always have limited time. When we execute regression testing we always have limited time.
This means that a test team should decide which of the software This means that a test team should decide which of the software
requirements are most important to validate and agree on the requirements are most important to validate and agree on the
regression test scope. regression test scope.

•• Commonly, validating core functionality is a minimal requirementCommonly, validating core functionality is a minimal requirement for for
regression test coverage. In addition, testers might decide thatregression test coverage. In addition, testers might decide that some some
of the identified crosscutting concerns should be included in thof the identified crosscutting concerns should be included in the e
regression test scope. regression test scope.

The assessment results can be presented as a range The assessment results can be presented as a range
between covering only the core functionality and covering between covering only the core functionality and covering

a complete inventory of requirements, including all a complete inventory of requirements, including all
crosscutting concerns. crosscutting concerns.

48

Example 1: Example 1:
Assessment Results in RCTAssessment Results in RCT

Testing Concerns

U
C

.0
1.

01
. C

re
at

e
G

ue
st

 R
es

er
va

tio
n

U
C

.0
1.

02
. U

pd
at

e
G

ue
st

 R
es

er
va

tio
n

U
C

.0
1.

03
. C

an
ce

l G
ue

st
 R

es
er

va
tio

n

U
C

.0
1.

04
. C

he
ck

-In
 G

ue
st

U
C

.0
1.

05
. C

he
ck

-O
ut

 G
ue

st

U
C

.0
1.

06
. P

os
t C

ha
rg

es
 to

 G
ue

st
's

 F
ol

io

U
C

.0
1.

07
. V

ie
w

, U
pd

at
e

Fo
lio

 C
ha

rg
es

U
C

.0
1.

08
. C

re
at

e
M

es
sa

ge
 fo

r
G

ue
st

U
C

.0
1.

09
. V

ie
w

, C
an

ce
l M

es
sa

ge

U
C

.0
1.

10
. A

dd
 T

ra
ve

l A
ge

nc
y

C
om

m
is

si
on

s

U
C

.0
1.

11
. V

ie
w

, U
pd

at
e

Tr
av

el
 A

ge
nc

y
Co

m
m

is
si

on
s

U
C

.0
1.

12
. M

an
ag

e
R

oo
m

in
g

Li
st

C
ov

er
ag

e
by

 C
on

ce
rn

 T
yp

es

Core Functionality 1 1 1 1 1 1 1 1 1 1 1 1 75%
GUI Features 1 1 1 1 1 1 1 1 1 1 1 1 42%
Crosscutting Concerns
ET - Entitlements 1 1 1 1 1 1 1 1 1 1 1 1 25%
ST - Status 0 1 1 1 1 1 1 1 1 1 1 1 18%
FV - Field Validation 1 1 0 1 0 1 1 0 0 1 1 1 25%
DD - Data Dependency 1 1 0 1 0 1 1 0 0 0 0 0 0%
CC - Concurrency 1 1 0 1 0 0 0 0 0 0 0 0 0%
CN - Connectivity 1 1 1 1 1 0 0 0 0 0 0 0 60%
SI - System Interface 1 1 1 1 1 0 0 0 0 0 0 0 100%

Test Coverage by Use Cases: 75% 22% 50% 56% 83% 17% 0% 25% 0% 80% 40% 0% 37%

"01. Front Desk" Module - Test Coverage Analysis

0 - means not applicable concern
1 - means applicable concern
Yellow-colored Cell - means missing tests (gap)

Test coverageTest coverage
Range:Range:

37% 37% -- 75%75%

49

Example 2: Example 2:
Assessment Results by Core FeaturesAssessment Results by Core Features

83%
78%

71%

60%

50%

33%
25%

20%
14%

0% 0% 0%0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

U
C

.0
1.

10
. A

dd
 T

ra
ve

l
A

ge
nc

y
C

om
m

is
si

on
s

U
C

.0
1.

01
. C

re
at

e
G

ue
st

R
es

er
va

tio
n

U
C

.0
1.

05
. C

he
ck

-O
ut

 G
ue

st

U
C

.0
1.

04
. C

he
ck

-In
 G

ue
st

U
C

.0
1.

03
. C

an
ce

l G
ue

st
R

es
er

va
tio

n

U
C

.0
1.

11
. V

ie
w

, U
pd

at
e

Tr
av

el
 A

ge
nc

y
C

om
m

is
si

on
s

U
C

.0
1.

08
. C

re
at

e
M

es
sa

ge
fo

r G
ue

st

U
C

.0
1.

02
. U

pd
at

e
G

ue
st

R
es

er
va

tio
n

U
C

.0
1.

06
. P

os
t C

ha
rg

es
 to

G
ue

st
's

 F
ol

io

U
C

.0
1.

07
. V

ie
w

, U
pd

at
e

Fo
lio

 C
ha

rg
es

U
C

.0
1.

09
. V

ie
w

, C
an

ce
l

M
es

sa
ge

U
C

.0
1.

12
. M

an
ag

e
R

oo
m

in
g

Li
st

Test
Coverage

Gaps

50

Example 3: Example 3:
Assessment Results by Concern TypesAssessment Results by Concern Types

100%

75%

60%

42%
38%

25% 25%
18%

0% 0%0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SI - System
Interface

Core
Functionality

CN -
Connectivity

GUI Features RP - Reports FV - Field
Validation

UR - User
Roles

ST - Status CC -
Concurrency

DD - Data
Dependency

Test
Design
Gaps

51

Example 4: Example 4:
Assessment Results by ModulesAssessment Results by Modules

The assessment results for each module are presented as a range.The assessment results for each module are presented as a range.
A QA team should decide what test coverage is really necessary. A QA team should decide what test coverage is really necessary.

Test Coverage by Modules

37%
21% 18% 16% 12%

75%

51%
42% 35% 27%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
01

. F
ro

nt
 D

es
k

02
. H

ot
el

M
an

ag
em

en
t

03
.

A
cc

ou
nt

in
g

04
.

H
ou

se
ke

ep
in

g

05
. S

ys
te

m
S

et
up

Entire Inventory
Core Functionality

52

PresentationPresentation
SummarySummary

53

Summary of the AORE TechniquesSummary of the AORE Techniques

RequirementsRequirements
ElicitationElicitation

RequirementsRequirements
AnalysisAnalysis

RequirementsRequirements
SpecificationSpecification

Separation of Concerns Separation of Concerns
Requirements Mutual Requirements Mutual

Impact AnalysisImpact Analysis
Requirements Composition Requirements Composition

TableTable

ImprovingImproving
RequirementsRequirements
MaintainabilityMaintainability

ImprovingImproving
RequirementsRequirements
CompletenessCompleteness

AspectAspect--Oriented RequirementsOriented Requirements
EngineeringEngineering

AOREAORE
BenefitsBenefits

Join PointsJoin Points
Composition RulesComposition Rules

Composition PointersComposition Pointers
UML ModelingUML Modeling

AOREAORE
TechniquesTechniques

54

ConclusionConclusion

•• AORE does not replace, but rather complements any of AORE does not replace, but rather complements any of
the existing requirements methodologies.the existing requirements methodologies.

•• AORE provides techniques to develop betterAORE provides techniques to develop better--structured structured
requirements that can help us improve requirements requirements that can help us improve requirements
completeness, maintainability, and cost of development.completeness, maintainability, and cost of development.

•• AORE is a young methodology that is still evolving, AORE is a young methodology that is still evolving,
exploring its benefits, and making its way to practitioners.exploring its benefits, and making its way to practitioners.

•• AORE current challenges:AORE current challenges:
–– consolidating various composition rules into a standard consolidating various composition rules into a standard

set of rules;set of rules;
–– adopting standard UML techniques to support aspectadopting standard UML techniques to support aspect--

oriented requirements modeling;oriented requirements modeling;
–– reconciling the differences between the two schools, reconciling the differences between the two schools,

i.e., twoi.e., two--dimensional vs. multidimensional vs. multi--dimensional separation dimensional separation
of concerns to form a consistent methodology.of concerns to form a consistent methodology.

55

Appendix A Appendix A

Descriptions ofDescriptions of
Crosscutting Concerns Common Crosscutting Concerns Common

to Financial Applicationsto Financial Applications

56

Descriptions of Crosscutting Descriptions of Crosscutting
ConcernsConcerns

•• Crosscutting concerns common to business Crosscutting concerns common to business
applications:applications:

Concern Type Description
ET—Entitlements This concern relates to defining various user entitlements and specifying

which core features can be executed by a given entitlement.

AS—Account Setup This concern relates to specifying attributes of client account setup and how
they affect behavior of core features.

RGN—Region This concern is common to global financial applications that are used in
different regions around the globe. It relates to specifics of core feature
behavior that depends on the different regions.

ST—Status This concern specifies a lifecycle of a particular entity—for example, a
reservation in the case of a hotel management application or a trade order in
the case of trading applications. A lifecycle is commonly composed of various
statuses that affect and constrain execution of core features. For example, if
a reservation has a status “Canceled,” a user cannot check in or check out a
guest. If a company status is “Inactive,” a user cannot add or update travel
agency commissions for this company.

PT—Product Type This concern is common to trading systems where a given application can be
used for trading different financial products. For example, an equity-trading
application can be used for trading stocks, options, and indices. Depending
on a product type, some core features can behave differently.

57

Descriptions of Crosscutting Concerns Descriptions of Crosscutting Concerns
(cont(cont’’d)d)

Concern Type Description
FV—Field Validation This concern is common to any business application and relates to

validating individual data entry fields.
DDV—Data Dependency

Validation
This concern is common to any business application and relates to
validating a combination of related fields. For example, in the case of a
hotel management system, a reservation's check-in date should be
before a check-out date, the check-out date should be before a credit
card expiration date, etc.

CN—Connectivity This concern is common to any business application that is composed of
different components communicating over a network. It relates to
validating that the system’s front end stays connected while the user
completes a given transaction, and it defines the alternative behavior
when the application goes into a disconnected state.

CC—Concurrency This concern is common to any multi-user business application. It relates
to handling concurrent manipulation of the same data by multiple users.

SI—System Interface This concern is common to any business application that has interfaces to
external systems. It relates to details of sending and receiving data to or
from other systems (upstream or downstream).
Such a concern can affect many core features that either use data from
external systems, or produce and send data to external systems.

	Presentation Outline
	Introduction
	Characteristics of Good Software Requirements
	Two Categories of Requirements
	Example: Impact of Supplementary Features
	Issue with Requirements Completeness
	Issue with Requirements Maintainability
	Symptoms & Root-Causes �of Non-Maintainable Requirements
	AORE: Separation of Concerns
	AORE vs. Other Methodologies
	Part 1�� AORE�Analysis Techniques
	Analysis Phase: �Traditional Application Decomposition
	AORE: Two-dimensional Decomposition
	 Analysis Phase: � Characteristics of Crosscutting Concerns
	Examples of Crosscutting Concerns
	Analysis Phase: �Analyzing Requirements Impact
	Analysis Phase: �Composing a Structure of Requirements
	RCT Example (fragment): �Hotel Management Application
	RCT Example (fragment): �Equity Trading Application
	Requirements Composition Table vs. �Requirements Traceability Matrix
	Summary of the RCT Benefits
	Summary of the AORE Techniques
	Part 2�� AORE�Specification Techniques
	Specification Phase: �Defining Composition Rules
	Example: Agile User Story
	Specification Phase: �Composition Modeling with UML
	Example: Documenting Realizations
	Example: Use Case Scenario
	Join Points and Composition Pointers
	Example: Documenting Realizations
	Summary of the AORE Techniques
	Benefits of the AORE Specification�Techniques
	Part 3�� Using RCT for�Change Impact Analysis
	Change Impact Analysis – Why?
	Change Impact Analysis – How?
	Approach to Performing �Change Impact Analysis
	Example: Documenting the Results�of Change Impact Analysis
	Benefits of Change Impact Analysis
	Part 4�� Using RCT for�Test Coverage Assessment
	Common Test Process Issue
	Purposes of the RCT Technique
	The Assessment Steps
	Step 2: Establish Traceability
	Example: Requirements Repository�in HP Quality Center
	Step 3: Measure Test Coverage and Identify Gaps
	Step 3 (cont’d): Presenting the Test Coverage Results
	Example 1: �Assessment Results in RCT
	Example 2: �Assessment Results by Core Features
	Example 3: �Assessment Results by Concern Types
	Example 4: �Assessment Results by Modules
	Presentation�Summary
	Summary of the AORE Techniques
	Conclusion
	Appendix A ��Descriptions of�Crosscutting Concerns Common to Financial Applications
	Descriptions of Crosscutting Concerns
	Descriptions of Crosscutting Concerns (cont’d)

